二、几种特别通道类型
由上一节内容可以看到,最早的通道概念是传统照相工艺中的遮板演变而来,用以表示选择范围的特别图像。在这之后,计算机图像处理技术快速发展,通道的概念又有了大幅度的拓展,进而涵盖了矢量绘图、三维建模、材质、渲染等诸多领域,而不再仅仅局限于平面设计中“选区范围”的原始意义。这些形形色色的“通道”都有着各自不同的名称、用途与计算方式,但又都与原始的通道概念有着本质上的相似:他们都是依附于其他图像而存在的,单一色相的灰阶图。
1 .原色通道、 Alpha 通道与专色通道
在前面的描述中,我们已经细致地了解了通道,即单色图像的数字化过程。那么,计算机又是如何用这些数字表示彩色图像的呢?首先,我们来了解一下原色的概念与加减法混合原理。
在小学美术课上,我们就了解了红黄蓝三原色的概念。这里的红、黄、蓝正确地说应该是洋红( Magenta )、黄(
Yellow )与青( Cyan )。将这三种颜色按不同的比例混合,可以得到其他的任意颜色;而这三种颜色最大程度的混合,就会使其范围内所有波长的可见光全部被吸收而显示出黑色。我们将这三种元色称为“光源三原色”,而将这种在混合过程中颜色亮度不断降低的混合方式称为减法混合。
通常,在印刷中,应用的就是这种减法混合原理:在白色的纸张上通过光源三原色油墨的混合,得到各种色彩及其组合而成的图像。但在实际操作中,通过混合得到的黑色成本高、质量差,所以通常人为地添加一种成本较低的黑色油墨(
blacK ),与品、黄、青共同印制。因此,这种印刷的过程也被称为“四色印刷”,而其颜色体系被称为“ CMYK 色彩体系”。
对应于印刷中减法混合原理的,是显示元件所遵循的加法混合原理。红( Red )、绿( Green )、蓝( Blue
)三个颜色被称为“物体三原色”,三种颜色光的混合,可以得出其它任意色彩,而其最大混合将得到亮度最高的颜色――白色。我们知道,我们身边的绝大多数显示设备(如
CRT 阴极射线显像管、 LCD 液晶面板等)都应用了加法混合原理。因此,这些设备在未启动时,底色越黑、亮度越低,其成像效果就越好。显示颜色体系也被称为
RGB 颜色体系。
自然法则是如此的简洁而柔美,千变万化的色彩仅仅是三种简朴原色的有机组合。因此,任意一张彩色图像都可以看作三张不同原色图像的叠加。既然任意的单色灰阶图都可以被视为通道,那么,我们就完全可以用
3 ~ 4 个通道来记录一张彩色照片。每一个通道记录一个对应原色在彩色图像上的分布信息,故我们称其为“原色通道”。用于显示用途的图片(例如网站彩页)可以被分解为
R 、 G 、 B 三个原色通道,而需要输出的图片(例如海报、杂志封面、包装纸等)则被分解为 C 、 M 、 Y 三个原色通道与一个
K 通道。
既然每个通道的单一像素需要 8 个二进制位的存储空间,那么在三色通道中,每一个像素都由三个单色像素混合而成,也就需要
8 × 3=24 个二进制位来进行存储。这样,在数据量变为原来的三倍时,可以表达的色彩数目就变为 2 24 ≈ 1.6
× 10 7 种。我们通常将由这 1600 万个颜色所组成的色域称为“ 24bit 真彩色”。
2 . Alpha 通道
Alpha 通道是为保存选择区域而专门设计的通道。在生成一个图像文件时,并不必须产生 Alpha 通道。通常它是由人们在图像处理过程中人为生成,并从中读取选择区域信息的。因此在输出制版时,
Alpha 通道会因为与最终生成的图像无关而被删除。但也有时,比如在三维软件最终渲染输出的时候,会附带生成一张 Alpha
通道,用以在平面处理软件中作后期合成。
除了 photoshop 的文件格式 PSD 外, GIF 与 TIFF 格式的文件都可以保存 Alpha 通道。而
GIF 文件还可以用 Alpha 通道作图像的去背景处理。因此,我们可以利用 GIF 文件的这一特性制作任意外形的图形。
3 .专色通道
为了让自己的印刷作品与众不同,往往要做一些特别处理。如增加荧光油墨或夜光油墨,套版印制无色系(如烫金)等,这些特别颜色的油墨(我们称其为“专色”)都无法用三原色油墨混合而成,这时就要用到专色通道与专色印刷了。
在图像处理软件中,都存有完备的专色油墨列表。我们只须选择需要的专色油墨,就会生成与其相应的专色通道。但在处理时,专色通道与原色通道恰好相反,用黑色代表选取(即喷绘油墨),用白色代表不选取(不喷绘油墨)。这一点是需要特殊注重的。
专色印刷可以让作品在视觉效果上更具质感与震撼力,但由于大多数专色无法在显示器上呈现效果,所以其制作过程也带有相称大的经验成分。
4 .蒙板与贴图混合通道
蒙板又被称为“遮罩”,可以说是最能体现“遮板”意义的通道应用了。
在一张图像(或一个图层)上添加一张黑白灰阶图,黑色部分的图像将被隐去(而不是删除),变为透明;白色部分将被完全显现;而灰阶部分将处于半透明状态。蒙板无论在图像合成还是在特效制作方面,都有不可取代的功用。蒙板也可以应用到三维模型的贴图上面。金属上的斑斑锈迹,玻璃上的贴花图案,这些外形不规则的图形,往往要用矩形贴图加蒙板的方法加以处理。这种类型的蒙板由于需要调整它们在三维表面的坐标位置,所以经常被视为一种特别形式的贴图,称为“透明度贴图”。
蒙板不仅可以在简朴的贴图中使用,更可以在复杂得多维材质中使用。当两种材质在同一表面交错混合时,人们同样需要用通道来处理他们的分布。而与普通蒙板不同的是,这样的“混合通道”是直接应用在两张图像上的:黑色的部分显示
A 图像;白色部分显示 B 图像;灰阶部分则兼而有之。可见,混合通道是由蒙板概念衍生而来,用于控制两张图像叠盖关系的一种简化应用。
5 .置换贴图与凹凸贴图
在三维软件中,通道并不仅限于处理平面贴图,他也被用于表现更为复杂的材质,甚至用来建立模型。
试想,我们要对一枚硬币建模:其表面纷繁复杂的图案与花纹一定会给我们的工作带来不少麻烦,用通常的建模手段,几乎无法完成。也许有人会问:我们能不能用一张平面图像来表示三维物体表面的凹凸起伏(就像一张海拔地图那样),而让计算机自动完成繁琐的建模工作呢?答案是:能,而且这张要害的平面图就是通道。
将一张通道用所谓“置换贴图”的方法贴到物体的表面,这时,计算机就会如是运作: 将贴图表面上的节点,按照贴图通道上像素的亮度信息,沿曲面在该点的法线方向进行不同程度的牵引拉伸,要么凹下去,要么凸起来:就像比对着一张用颜色描绘海拔的地图,在泥巴上捏出高山与峡谷相同。现在,我们只要用平面绘图工具绘制一张二维图像,然后将其转化为置换贴图并赋予物体,一枚极具质感的硬币就跃然纸上了。
置换贴图虽然可以大大节省建模工作量,但由于这样生成的模型不够优化,多边形数目过于繁多,会造成渲染时间的大幅攀升。为此,人们想出一个折中的好办法。在不增加模型复杂度的前提下,使物体表面的凹凸效果近似于置换贴图中生成的真实模型,这就是凹凸贴图算法。凹凸贴图同样以通道为信息源,通过特别的表面贴图与光影处理,表现出物体的高光与阴影,使其光影效果在大多数情况下能够达到令人信服的程度。
现在,我们再使用凹凸通道贴图建立一枚硬币模型,并与前面的置换模型进行渲染比对。我们会发现:在“正视”所处理的平面(视线垂直于平面)时,后者与前者有着同样精彩的表现,但渲染时间大大优于前者;而在“侧视”(视线垂直于该平面的法线)对比时,置换贴图依旧表现出物体表面真实的起伏形态,而用凹凸贴图处理的平面则平整如初。这也使凹凸贴图的缺点暴露无遗。以上两种算法各有优劣,而在最终决定毕竟使用哪一种算法使通道与模型相结合,以达到所需效果时,视角便成为决定性的因素。
6 .矢量通道
为了减小数据量,人们将逐点描绘的数字图像再一次解析,运用复杂的计算方式将其上的点、线、面与颜色信息转化为简捷的数学公式;这种公式化的图形被称为“矢量图形”;而公式化的通道,则被称为“矢量通道”。矢量图形虽然能够成百上千倍地压缩图像信息量,但其计算方式过于复杂,转化效果也往往不尽人意。因此,他只有在表现轮廓简洁、色块鲜明的几何图形时才有用武之地;而在处理真实效果(如照片)时,则很少派上用场。
Photoshop 中的“路径”, 3DS 中的几种预置贴图, illustrator 、 flash 等矢量绘图软件中的蒙板,都是属于这一类型的通道。
古人云:“勿在沙地筑高台”。想拥有过人的技术就必须努力学好基础知识。通道的应用是从事美工行业人员从入门到精通的必经之路,也是这门课程的华彩乐章。希望大家能够从这里一点一滴地学起,在不远的将来,让自己的作品散发出艺术刺眼的光线。
|